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1

Phase Equilibrium and Its Geometric
Presentation

1.1. Introduction

The process of distillation can be presented as consisting of numerous states of
phase equilibrium between flows of liquid and vapor that have different compo-
sitions. Geometric analysis of the distillation process represented in the so-called
concentration space (C) is the main instrument for understanding its regularities.

That is why, before we start the examination of the existing distillation process
and its geometric interpretation, it is necessary to consider geometric interpreta-
tion, of the phase equilibrium. Numerous methods of calculating phase equilib-
rium are described in many monographs and manuals (see, e.g., Walas [1985]).

We will not repeat these descriptions but instead will examine only represen-
tation of equilibrium states and processes in concentration space.

1.2. Concentration Space

Molar composition of an n-component mixture is presented as an array that holds
molar concentrations of all components:

xi = mi∑
mi

(1.1)

∑
xi = 1 (1.2)

where mi is the amount of moles of the component i in the mixture.
Concentration space of an n-component mixture Cn is a space in which every

point corresponds to a mixture of definite composition. Dimensionality of concen-
tration space corresponds to the number of concentrations of components that can
be fixed independently.

The (n − 1) concentration for an n-component mixture can be fixed indepen-
dently because concentration of the nth component can be found from Eq. (1.2).
That is why the dimensionality of the concentration space of binary mixture C2 is
one, of ternary mixture C3 – two, of four-component mixture C4 – tree, etc.

1
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Figure 1.1. Concentration simplexes (a) for binary mixtures,
(b, c) for three-component mixtures. and (d) for four-compo-
nent mixtures. x1, x2, x3, x4, concentrations of components.

Concentration space is the number of points representing all possible compo-
sitions of an n-component mixture. Concentration space of a binary mixture C2 is
a segment of unit length; the ends correspond to pure components, and the inner
points correspond to mixtures of various compositions (Fig. 1.1a)

For a three-component mixture, it is convenient to present the composition
space C3 as an equilateral triangle, the height of which equals one (Fig. 1.1b). The
triangle’s vertexes represent pure components, the points within its sides, repre-
sent the binary constituents of the three-component mixture, and the inner points
of triangle represent the three-component mixture compositions. The lengths of
the perpendiculars to the triangle’s sides correspond to the concentrations of the
components indicated by the opposite vertexes. The described system of coordi-
nates, which bears the name of the system of uniform coordinates, was introduced
by Mobius and was further developed by Gibbs.

Another way to present a three-component mixture’s composition space C3

implies the use of an isosceles right-angle triangle (Fig. 1.1c), with a side equal
to one. In this method of representation the concentrations of components 1 and
2 are expressed by the length of perpendicular segments, as in the first case of
the composition’s representation, and the concentration of the third component
is defined in accordance with the formula: x3 = 1 − (x1 + x2).

Four-component mixture composition can be represented by a point of an
equilateral tetrahedron C4 (Fig. 1.1d). In this tetrahedron the vertexes represent
the pure components, the edges represent the binary constituents, and the faces
represent the three-component constituents.

In this book, we will often represent the mixture compositions corresponding
to the material balance (e.g., the compositions of feed flow and product flow of
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the distillation column):

Fxi F = Dxi D + Bxi B (1.3)

(D + B)xi F = Dxi D + Bxi B (1.4)

D(xi F − xi D) = B(xi B − xi F ) (1.5)

Equation (1.5) represents the so-called lever rule: points xiF, xiD, and xiB are
located on one straight line, and the lengths of the segments [xiF, xiD] and [xiB,
xiF] are inversely proportional to the flow rates D and B (Fig. 1.1b). Mixture
with a component number n ≥ 5 cannot be represented clearly. However, we will
apply the terms simplex of dimensionality (n − 1) for a concentration space of
n-component mixture Cn, hyperfaces Cn−1 of this simplex for (n − 1)-component
constituents of this mixture, etc.

1.3. Phase Equilibrium of Binary Mixtures

An equilibrium between liquid and vapor is usually described as follows:

yi = Ki xi (1.6)

where yi and xi are equilibrium compositions of vapor and liquid, respectively,
and Ki is the liquid–vapor phase equilibrium coefficient.

To understand the mutual behavior of the components depending on the degree
of the mixture’s nonideality caused by the difference in the components’ molecu-
lar properties, it is better to use graphs y1 − x1, T − x1, T − y1, K1 − x1, and K2 − x1

(Fig. 1.2). In Fig. 1.2, the degree of nonideality increases from a to h: a is an ideal
mixture, b is a nonideal mixture with an inflection on the curve y1 − x1 (a and b
are zeotropic mixtures), c is a mixture with a so-called tangential azeotrope (curve
y1 − x1 touches the diagonal in the point x1 = 1), d is an azeotropic mixture with
minimum temperature, e is a mixture with a so-called inner tangential azeotrope,
f is a mixture with two azeotropes, g is a heteroazeotropic mixture, and h is an
azeotropic mixture with two liquid phases. Azeotrope is a binary or multicompo-
nent mixture composition for which the values of phase equilibrium coefficients
for all components are equal to one:

KAz
i = 1 (i = 1, 2, . . . n) (1.7)

Heteroazeotrope is an overall composition of a mixture with two liquid phases
for which the values of the overall coefficients of phase equilibrium for all com-
ponents are equal to one:

KHaz
ov,i = 1 (i = 1, 2, . . . n) (1.8)

where Kov,i = yi/xov,i , xov,i = x(1)
i a + x(2)

i (1 − a), a is the portion of the first liq-
uid phase in the whole liquid, and x(1)

i and x(2)
i are the concentrations of the ith

component in first and second liquid phases correspondingly.
In this book, we will see that the previously discussed features are of great

importance. Even b case results in serious abnormalities of the distillation process.
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Figure 1.2. Phase equilibrium of binary mixtures: (a) ideal mixture;
(b) nonideal mixture; (c) tangential azeotropic mixture (x1, Az = 1);
(d) azeotropic mixture; (e) mixture with internal tangential azeotrope
(0 < x1, Az < 1); (f) mixture with two azeotropes Az1 and Az2; (g)
heteroazeotropic mixture; and (h) azeotropic mixture with two liq-
uid phases (y − x, T − x − y, and K − x diagrams). Az, azeotropic or
heteroazeotropic point; xL1 and xL2, compositions of liquid phases.

The appearance of azeotropes makes the separation of the mixture into pure
components impossible without special procedure application.

Further increase in nonideality and transition to heteroazeotropes makes it
again possible to separate mixtures, not using just a distillation column, but a
column with decanter complex. Cases e and f occur, but very seldom; therefore,
we will not consider them further.

In the azeotrope point, K1 = K2 = 1. For a tangential azeotrope, xAz
1 = 1 or

xAz
1 = 0. It might seem that a tangential azeotrope is no obstacle for separation.
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However, later in this book, we will see that if xAz
1 = 1, it is impossible to get

component 1 with a high degree of purity, and if xAz
1 = 0, it is impossible to get

component 2 with a high degree of purity.

1.4. Phase Diagrams of Three-Component Mixtures

Three-component mixtures represent the simplest type of multicomponent mix-
tures. The majority of multicomponent mixture peculiarities become apparent in
three-component mixtures. This is why the three-component mixtures are best
studied. Liquid–vapor equilibrium in the concentration triangle C3 is represented
by a vector connecting a point of liquid composition with a point of equilibrium
vapor composition x → y. This vector is called a liquid–vapor tie-line. The opposite
vector y → x (vapor–liquid) is called a vapor–liquid tie-line. The tie-lines field in
the concentration triangle characterizes phase equilibrium in each of its points.

However, tie-lines can cross each other. That is why, for phase equilibrium
characteristics in the concentration space, it is convenient to use another kind of
line, the so-called residue curves. Let’s consider a process of open evaporation
(simple distillation) illustrated in Fig. 1.3.

Let’s assume that the initial amount of liquid in a flask makes L moles and
the liquid has a composition xi (i = 1, 2, . . . n). After the evaporation of a small
amount of liquid �L, vapor with a composition yi (i = 1, 2, . . . n), will be formed
which represents an equilibrium of the remaining liquid, the amount of which is
equal to L − �L moles and the composition is xi + �xi.

The material balance for i component is:

Lxi = (�L)yi + (L− �L)(xi + �xi ) (1.9)

In limit at �L → 0,

Ldxi/dL = xi − yi (1.10)

dL, yi

L, xi

Figure 1.3. Open evaporation process (open distillation). x, y, compo-
sition of liquid and equilibrium vapor phases; L, amount of liquid; dL,
infinitesimal amount of evaporated liquid.
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Denoting dt = dL/L, we will get the equation of a residue curve:

dxi/dt = xi − yi (i = 1, 2, . . . n) (1.11)

The residue curve represents the change in a mixture composition during the
open evaporation process. Each point of this line corresponds to a certain moment
of time and to a portion of evaporated liquid.

From Eq. (1.11), it results that in each point of a residue curve a liquid–vapor
tie-line is tangent to this line. The residue curves are convenient for the description
of phase equilibrium because as these lines are continuous and noncrossing.

These lines were used for the first time to describe phase behavior of
three-component azeotropic mixtures at the beginning of the twentieth century
(Ostwald, 1900; Schreinemakers, 1901). Later, the residue curves of three-
component azeotropic mixtures were studied in the works of Reinders & De
Minjer (1940a, 1940b) for the azeotropic mixture acetone–chloroform–benzene
and more widely in the works by Bushmakin & Kish (1957a, 1957b). Gurikov
(1958) developed the first classification of three-component mixtures residue
curve diagrams. In the works of Zharov (1967, 1968a, 1968b) and Serafimov
(1969) the residue curve diagrams analysis and classification were applied for four-
component and multicomponent mixtures. Several years later, these works were
summarized in a monograph by Zharov & Serafimov (1975). In recent years, other
versions of residue curve diagram classifications were developed (Matsuyama &
Nishimura, 1977; Doherty & Caldarola, 1985).

Points of pure components and azeotropes are stationary or singular points of
residue curve bundles. At these points, the value dxi/dt in Eq. (1.11) becomes equal
to zero. A stationary point at which all residue curves come to an end is called a
stable node (the temperature increases in the direction of this point). A specific
point at which all residue curves start is called an unstable node (the temperature

a) b) c)

d) e) f)

h)g) i)

12

1 1 1

12 12

123 123 123

Figure 1.4. Types of stationary points
of three-component mixtures: (a) one-
component stable node, (b) one-
component unstable node, (c) one-
component saddle, (d) two-component
stable node, (e) two-component unsta-
ble node, (f) two-component saddle,
(g) three-component stable node, (h)
three-component unstable node, and
(i) three-component saddle. Arrows,
direction of residium curves.
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1.4 Phase Diagrams of Three-Component Mixtures 7

increases in the opposite direction of this point). The rest of stationary points are
called saddles (Fig. 1.4).

A stationary point type is defined by the proper values of Yakobian from Eq.
(1.11). For a stable node, both proper values are negative, λ1 < 0 and λ2 < 0; for
an unstable node, both proper values are positive, λ1 > 0 and λ2 > 0; and for a
saddle, one proper value is negative, λ1 < 0, and the second is positive, λ2 > 0.

For a distillation process not only the stationary point type, but also the behavior
of the residue curve in the vicinity of the stationary point is of special importance.
If the residue curves in the vicinity of the specific point are tangent to any straight
line (singular line) (Fig. 1.4a, b, d, e, g, h), the location of this straight line is of great
importance. A special point type and behavior of residue curves in its vicinity are
called stationary point local characteristics.

The whole concentration space can be filled with one or more residue curve
bundles. Each residue curve bundle has its own initial point (unstable node) and
its own final point (stable node). Various bundles differ from each other by initial
or final points.

The boundaries separating one bundle from another are specific residue curves
that are called the separatrixes of saddle stationary points. In contrast to the other
residue curves, the separatrixes begin or come to an end, not in the node points but
in the saddle points. A characteristic feature of a separatrix is that in any vicinity
of its every point, no matter how small it is, there are points belonging to two
different bundles of residue curves. The concentration space for ideal mixtures
is filled with one bundle of residue curves. Various types of azeotropic mixtures
differ from each other by a set of stationary points of various types and by the
various sequence of boiling temperatures in the stationary points.

The first topological equation that connects a possible number of stationary
points of various types for three-component mixtures (N, node; S, saddle; upper
index is the number of components in a stationary point) was deduced (Gurikov,
1958):

2(N3 − S3) + N2 − S2 + N1 = 2 (1.12)

Figure 1.5 shows mainly physically valuable types of three-component azeotropic
mixtures deduced by Gurikov (1958) by means of systematic application of Eq.
(1.12). In Fig. 1.5, one and the same structure cover a certain type of mix-
ture and an antipodal type in which stable nodes are replaced by unstable
ones and vice versa (i.e., the direction of residue curves is opposite). Besides
that, the separatrixes are shown by the straight lines. Let’s note that the later
classifications of three-component mixture types (Matsuyama & Nishimura, 1977;
Doherty & Caldarola, 1985) contain considerably greater number of types, but
many of these types are not different in principle because these classifications
assume light, medium, and heavy volatile components to be the fixed vertexes of
the concentration triangle.

Types of azeotropic mixture and separatrixes arrangements are also called mix-
ture nonlocal characteristics.

The part of the concentration space filled with one residue curve bundle is called
a distillation region Reg∞ (Schreinemakers, 1901). A distillation region Reg∞

(3) has
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Figure 1.5. Types of three-component mixtures according to Gurikov
(1958). Arrows, direction of residium curves (bonds); dotted lines, sep-
aratrixes.

boundary elements that include the separatrixes, segments of the concentration
triangle sides Reg∞

(2), and stationary points Reg∞
(1) referring to this region. A dis-

tillation region of a three-component mixture Reg∞
(3) is two-dimensional; separa-

trixes, and segments of the concentration triangle sides Reg∞
(2) are one-dimensional;

and stationary points Reg∞
(1) have zero dimensionality. Distillation regions and

their boundary elements are also called concentration space structural elements.
Besides these structural elements, concentration space has other structural ele-

ments that are of great importance for a distillation process under various modes.

1.5. Residue Curve Bundles of Four-Component Mixtures

The structure of residue curve bundles of four-component mixtures is significantly
more complex and diverse than that of three-component mixtures. This is due to
the fact that each four-component mixture consists of four three-component con-
stituents. Therefore, the number of types of four-component mixtures is enormous.
In addition to that, four-component mixtures can have four-component node
and saddle azeotropes. In contrast to three-component mixtures, the enormous
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a)

d)

b)

e)

c)

f)

Figure 1.6. Types of saddle points of four-component mixtures: (a) one-
component saddle, (b, c) two-component saddle, (d, e) three-component sad-
dle, and (f) four-component saddle. Separatrix surfaces are shaded. Arrows,
direction of residium curves; dotty lines, separatrixes.

number of four-component mixture structures makes their overall sorting out
practically impossible. However, a topological equation for four-component mix-
tures similar to Eq. (1.12) was obtained (Zharov & Serafimov, 1975).

To understand the peculiarities of location of residue curve bundles of four-
component mixtures, let’s consider their behavior in the vicinity of saddle points
(Fig. 1.6) and the nonlocal characteristics of the residue curve bundles using sepa-
rate examples of the four-component mixture structures (Fig. 1.7). In Fig. 1.7, the
separating surfaces of the residue curve bundles representing the two-dimensional
bundles Reg∞

(3) are shaded. Considering the nonlocal characteristics of the residue
curve bundles, the simplest of such characteristics refers to each pair of stationary
points. A pair of stationary points can be connected or not connected by the residue
curve. To be brief, let’s call the line of distillation that connects a pair of stationary
points a bond (link) – it will be designated by the arrow (→) that is directed
toward the side of the temperature increase (Petlyuk, Kievskii, & Serafimov,
1975a, 1975b, 1977, 1979). For example, in Fig. 1.7a, 12 → 23. In the same fig-
ure, points 1 and 2 are not bonded.

The totality of all bonds characterizes the mixture’s structure. The bond serves
as the elementary nonlocal characteristic of the residue curve bundle structure.
Bonds form bond chains. The bond chains of maximum length connect the unstable
node N− and the stable node N+ of the distillation region Reg∞. Let’s call a
polyhedron formed by all stationary points of one maximum-length bond chain
and containing all components of the mixture a distillation subregion Regsub.

The distillation region Reg∞ is a polyhedron formed by all stationary points
of the totality of all maximum-length bond chains connecting the same unstable
node of the composition space with the same stable node (it will be designated ⇒).
The examples of distillation regions Reg∞ are 12 ⇒ 4, 12 ⇒ 2 (at Fig. 1.7a),
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Figure 1.7. The examples of four-component structures (bonds and distil-
lation regions Reg∞). Separatrix surfaces are shaded. Arrows, direction of
residium curves; dotty lines, separatrixes.

1 ⇒ 4, 1 ⇒ 2, 23 ⇒ 4, 23 ⇒ 2 (at Fig. 1.7b), 1 ⇒ 3, 1 ⇒ 4, 2 ⇒ 3, 2 ⇒ 4 (at Fig.
1.7c), 13 ⇒ 1, 13 ⇒ 3, 2 ⇒ 1, 2 ⇒ 3 (at Fig. 1.7d), 134 ⇒ 1, 4 ⇒ 1 (at Fig. 1.7e),
23 ⇒ 2, 23 ⇒ 3, 4 ⇒ 2, and 4 ⇒ 3 (at Fig. 1.7f).

The examples of distillation subregions Regsub are 12 → 23 → 3 →4, 12 →
1 → 3 → 4, and 12 → 23 → 24 → 4 (Fig. 1.7a). In this case, the distillation region
Reg∞ is 12 ⇒ 4 (Regsub ∈ Reg∞), or

↑ → 1 → ↓
12 → 23 → 3 → 4

↓ → 24 →↑
As we will see in Chapter 3, the distillation region and subregion character-

ize those possible product compositions that can be produced from the given
feedstock composition by distillation under one of the most important modes, in
particular, under the infinite reflux mode.

A bond, bond chain, distillation subregion, and region are the nonlocal structural
elements of the azeotropic mixture concentration space.

1.6. Matrix Description of the Multicomponent Mixture Residue
Curve Structure

The structure of the residue curve bundles can be obviously represented only for
binary, three-, and four-component mixtures. For mixtures with more components,
it is impossible. However, practice needs make necessary the analysis of the bundle
structure with any number of components. This problem can be solved by means
of a structure matrix description (Petlyuk et al., 1975a, 1975b).
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Figure 1.8. The examples of three-component structures and their
structural matrices. Arrows, direction of residium curves; dotted
lines, separatrixes; thick line with arrow, bond; dotty lines, transfer
to next bond.

By the structural matrix of the azeotropic mixture concentration space, we will
name a square matrix, the columns and lines of which correspond to the stationary
points and the elements of which ai j = 1, if there is a bond directed from stationary
point i to stationary point j (ai j = 0, if such a bond is missing). For the purpose of
obviousness, some examples of three-component mixture structural matrices are
shown in Fig. 1.8.

Each line of a structural matrix corresponds to the ith stationary point and
each column to the jth one. Diagonal elements ai j = 1 (it is accepted conditionally
that each specific point is bonded to itself). The components are labeled 1, 2, 3;
binary azeotropes are designated by two-digit numbers, 12, 13, 23; and the ternary
azeotrope by a three-digit number, 123. Zero column corresponds to an unstable
node N− and zero line to the stable N+ one (except for the diagonal elements).
Structural matrices provide an opportunity to easily single out all maximum-length
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bond chains (i.e., all the distillation subregions). For example, in Fig. 1.8c, the
distillation subregions Regsub are as follows: 123 → 12 → 1, 123 → 13 → 1, 123 →
12 → 2, 123 → 23 → 2, 123 → 23 → 3, and 123 → 13 → 3. Respectively, the
distillation regions Reg∞ are as follows: 123 ⇒ 1, 123 ⇒ 2, 123 ⇒ 3, or

↑ → 13 → ↓ ↑ → 23 → ↓ ↑ → 13 → ↓, ,
123 → 12 → 1 123 → 12 → 2 123 → 23 → 3

1.7. Lines, Surfaces, and Hypersurfaces Ki = Kj

In Sections 1.3 to 1.5, the residue curve bundles, which characterize the direction
of liquid–vapor tie-lines in each point of the concentration space (i.e., the phase
equilibrium field), were considered. As stated previously, such characteristics of
the phase equilibrium field and structural elements related to it (bonds, distillation
regions, and subregions) are the most important for one of the distillation modes,
in particular, for the infinite reflux mode.

However, the liquid–vapor phase equilibrium field has other important charac-
teristics that become apparent under other distillation modes, in particular, under
reversible distillation and usual (adiabatic) distillation with finite reflux.

To such characteristics are referred, first of all, lines, surfaces, and hypersurfaces
of the phase equilibrium coefficients equality (Ki = Kj). For the purpose of brevity,
we will name these lines, surfaces, and hypersurfaces as α-lines, α-surfaces, and α-
hypersurfaces (or univolatility lines, surfaces, and hypersurfaces: αi j = Ki/Kj = 1).

Univolatility α-lines, α-surfaces, and α-hypersurfaces divide the concentration

simplex into regions of order of components
ijk

Regord (in
ijk

Regord Ki > Kj > Kk)
(Petlyuk & Serafimov, 1983).

The totality of several regions of components’ order for which one and the same
component appear to be the most light volatile (Kl = max

i
Ki ) or the most heavy

volatile (Kh = min
i

Ki ) was named as a region of reversible distillation Regl
rev, s or

Regh
rev, r (Petlyuk, 1978). Such a name can be explained by the crucial meaning of

these regions for possibly realizing of reversible distillation (see Chapter 4).
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Figure 1.9. α-lines, α-surfaces (shaded), and regions of order
of components Regord for (a) three-component and (b) four-
component mixtures. 231, 213, 2431, and 2413, regions of com-

ponent order
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Regord; x → y, tie-line
liquid–vapor for point x on α-line; arrows, direction of residium
curves; dotty lines, separatrixes.


